Transistor Sizing for Low Power CMOS Circuits - Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on

نویسندگان

  • Manjit Borah
  • Robert Michael Owens
  • Mary Jane Irwin
چکیده

AbstructA direct approach to transistor sizing for minimizing the power consumption of a CMOS circuit under a delay constraint is presented. In contrast to the existing assumption that the power consumption of a static CMOS circuit is proportional to the active area of the circuit, it is shown that the power consumption is a convex function of the active area. Analytical formulation for the power dissipation of a circuit in terms of the transistor size is derived which includes both the capacitive and the short circuit power dissipation. SPICE circuit simulation results are presented to confirm the correctness of the analytical model. Based on the intuitions drawn from the analytical model, heuristics for initial transistor sizing on critical and noncritical paths for minimum power consumption are developed. Further, fast heuristics to perform transistor sizing in CMOS circuits for minimizing power consumption while meeting the given delay constraints are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transistor sizing for low power CMOS circuits

A direct approach to transistor sizing for minimizing the power consumption of a CMOS circuit under a delay constraint is presented. In contrast to the existing assumption that the power consumption of a static CMOS circuit is proportional to the active area of the circuit, it is shown that the power consumption is a convex function of the active area. Analytical formulation for the power dissi...

متن کامل

An extension of probabilistic simulation for reliability analysis of CMOS VLSI circuits

The probabilistic simulation approach [1] is extended to include the computation of the variance waveform of the power/ground current, in addition to its expected waveform. To provide the motivation for doing this, we focus on the problem of estimating the median timeto-failure (MTF) due to electromigration in the power and ground busses of CMOS circuits. New theoretical results are presented t...

متن کامل

A Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units

In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...

متن کامل

Switched-Capacitor Dynamic Threshold PMOS (SC-DTPMOS) Transistor for High Speed Sub-threshold Applications

This work studies the effects of dynamic threshold design techniques on the speed and power of digital circuits. A new dynamic threshold transistor structure has been proposed to improve performances of digital circuits. The proposed switched-capacitor dynamic threshold PMOS (SC-DTPMOS) scheme employs a capacitor along with an NMOS switch in order to effectively reduce the threshold voltage of ...

متن کامل

Design and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois

Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004